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Abstract

A mathematical folding theory for stratified viscoelastic media in layer parallel compression is presented. The second order fluid, in slow

flow, is used to model rock rheological behavior because it is the simplest nonlinear constitutive equation exhibiting viscoelastic effects.

Scaling and non-dimensionalization of the model system reveals the presence of Weissenberg number (Wi), defined as a ratio of time scales

t */(H*/V *). V */H* is the strain rate (sK1) imposed by an assumed far field velocity V * acting on a layer of thickness H *, while t * (s) is

related to the relaxation of normal stresses. Our most significant finding is a transitional behavior as Wi/½, which is independent of the

viscosity contrast. A change of variables shows that lengths associated with this transition are scaled by a parameter aZ[(1K2Wi)/(1C

2Wi)]1/2, which is inversely proportional to local strain energy. On this basis a scaling law representing a distribution of non-dimensional

wavelengths (wavelength/layer thickness) is derived. Geologically this is consistent with a transition from folding to faulting, as observed in

fold–thrust belts. Folding, a distributed deformation scaling as WiK1, is found to be energetically favored at non-dimensional wavelengths

ranging from about three to seven. Furthermore, the transition from folding to faulting, a localized deformation scaling as (aWi)K1, is

predicted at a non-dimensional wavelength of about seven. These findings are consistent with measurements of thrust sheets in the Sawtooth

Mountains of western Montana, USA and other fold–thrust belts. A review of the literature reveals a similar distribution of non-dimensional

wavelengths spanning a wide range of observational scales in compressional deformation. Specific examples include lithospheric scale

folding in the central Indian Basin and microscopic scale failure of ice columns between splay microcracks in laboratory studies.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many naturally deformed rocks appear to have under-

gone complicated deformation histories. Inferring systema-

tic narratives of deformation for given rock sequences

requires detailed knowledge of the deformed state across a

wide range of scales, as well as knowledge of the

mechanical processes by which rocks deform. While

technical skill in mapping deformation has increased

dramatically over the past half-century, progress in under-

standing the mechanics of deformation has been somewhat

limited. This is due in part to the kinematically restricted

nature of most laboratory tests used to characterize rock
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behavior (Hobbs, 1972) and the uncertainty in extrapolating

the resulting deformation mechanisms to geological con-

ditions (Paterson, 1987; Rutter and Brodie, 1991). Never-

theless it is well known that rocks behave neither as purely

viscous nor elastic media, but rather exhibit a wide range of

behaviors including stress relaxation that might collectively

be called ‘viscoelastic’. For example, recent advances in

laboratory rock mechanics have identified viscoelastic

properties of rocks that are relevant to seismic wave

attenuation and dispersion (Jackson, 2000). However, it is

not clear how these data are relevant to deformation on the

longer time scales assumed for orogenesis. Consequently,

models provide a necessary means of connecting the spatial

and temporal aspects of deformation, and can lead to the

identification of useful principles for interpreting the

deformed state. The purpose of this paper is to set forth

such a principle on the foundation of observations in
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fold–thrust belts and other compressional regimes spanning

a wide range of scales.

Two potential explanations for the spatial complexity of

deformation observed in outcrop are: (i) changes in material

properties through time, and (ii) spatiotemporal, but not

necessarily co-eval, complexities in the mechanisms of

deformation. Certainly, there are well-documented

examples of the former where through, for example, burial

and subsequent exhumation rocks exhibit distinctive

patterns of ‘ductile’ and overprinted ‘brittle’ deformation.

In this case the familiar mechanical concepts of flow and

fracture, and endmember constitutive models for ‘viscous’

and ‘elastic’ behaviors, have been applied with success. Just

as certainly, however, there are cases where it is not clear

that distinct deformation ‘phases’ occurred, yet the

deformation is quite complex. We focus initially on a

particular example of this found in a sandstone–shale

sequence exposed along the Sun River near Augusta,

Montana in the foreland disturbed belt of the Sawtooth

Mountains. There, folds and faults occur together in a

shallow crustal regime, but the faults do not all appear to

postdate the folds. These observations raise questions

regarding what constitutes an appropriate constitutive

equation describing rock deformation in fold–thrust belts.
Fig. 1. Aerial photograph of the Sawtooth Mountains, showing regularly

spaced thrust slices. Each cliff front marks a separate thrust sheet.
2. North Fork Sun River, Sawtooth Mountains

A striking feature of the disturbed belt in the Sawtooth

Mountains, Montana is the large-scale, regularly spaced

thrusts that repeat Paleozoic and lower Mesozoic sedimen-

tary rocks (Mudge, 1972). A view from the air (Fig. 1)

shows the repetition of thrust slices of predominantly

Mississippian Madison Group limestones and dolomites in

the frontal thrusts, typically thrust over Jurassic or

Cretaceous shales. Estimation of the ratio of thrust slice

length to bed thickness is dependent on the extrapolation to

the unexposed cut-offs at depth and eroded cut-offs in the

air. Without drill-hole data and seismic profiles, these

estimates depend crucially on the geometric ‘rule’ used in

the extrapolation (cf. Mudge (1972) with Mitra (1986)). The

regularity of the outcrop distribution of the units does,

however, imply the probability of some regularity of fault

spacing, presumably related to bed thickness.

There is folding associated with these thrust plates, but

the scale and exposure make it difficult to assess the

relationship between faulting and folding. However, within

the major thrust slices, a smaller-scale series of thrusts occur

in the alternating sandstones and shales of Cretaceous age.

These are closely associated with folds and are much better

exposed. We have examined the folds and faults in these

outcrops and measured the spacing of these structures at

several scales.

We concentrate on smaller-scale exposures (tens of

meters) that show more completely exposed thrust slices.

One of the best of these occurs in the banks of the North
Fork Sun River, east of the Diversion Thrust. Fig. 2 shows a

portion of the outcrop with a sequence of thrusts and folds in

a multilayered sandstone within a shale matrix (Johnson,

1988). Particular attention was given to the interrelationship

between the faults and the folds, (i.e. Is the thrust slice

folded? Does the fault occur on the limbs of a fold? What is

the location and span of the fold with respect to a thrust?),

and the distribution of non-dimensional fold and thrust

wavelengths. The wavelength of a fold or thrust was first

measured along the layer, and then divided by the thickness

of the layer.

There are different styles of folds. The most dramatic are

chevron folds with essentially parallel limbs and initial

spans between about two and three. An initial span is

defined as the length measured along the layer from one

inflection point to the next on the adjacent limb (i.e. a half

wavelength), divided by layer thickness. The chevron folds

have more uniform limb thicknesses, in contrast to some

other folds, which at fault cutoffs have a sheared limb

appearance. While many of the fault cut-off zones have

sheared limb folds, other folds exhibit sheared limbs

without a fault offset, or with only a very small fault offset.

Finally some of the thrust slices appear to be folded up

against one another, forming complex zones of folded fault

‘wedges’.



Fig. 2. Cross-section of Sun River outcrop (after Johnson, 1988). Non-dimensional wavelength measurements were made at several places in the topmost layer

(see roman numerals). Folds typically range from three to four, with thrust slices around seven.
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Given the close association of these features in this single

outcrop, we believe it is reasonable to interpret them as all

arising from shortening along the layer. Our observations

and measurements show that in some examples the fault

formed first, but in others the folds formed first. Still in

others both the folds and faults occur in complexes, from

which we infer that they formed during the same interval of

deformation. The non-dimensional wavelengths for thrust

slices tend to be about seven, whether or not the associated

sandstone unit is folded. Also, non-dimensional wave-

lengths for folds are generally less than seven, ranging as

low as about three. Since the exposure of the sandstone

layers is varied and the layers in places are thickened due to

small-scale wedging, it is not meaningful to be more

precise. The sheared limb folds are interpreted to be

precursors to faulting, rather than due to fault ‘drag’.

While some small-scale ramping occurs within individual

units of the sandstone layers creating small, ramp–fold

wedges, the overall style cannot be classified simply as

either ramp folding or as fault propagation folding.

The foregoing observations suggest that the sandstone

units in this outcrop were in a mechanically transitional state

during shortening, where both ‘distributed’ and ‘localized’

modes of deformation were possible. Consequently, any

model for this style of deformation must incorporate, in

addition to a more competent layer within a less competent

matrix, a mechanism which results in the formation of both

folds and faults under layer parallel shortening.
3. Layer parallel shortening of stratified viscoelastic

media

In this section the derivation of key results in the theory

of nonlinear viscoelastic deformation and a rationale for

using the second order fluid (SOF) equation (Coleman and

Noll, 1960) are presented. Mathematical details are included
within Appendix A. Superscript asterisks (*) are used

throughout to denote dimensional quantities. From the

outset deformation is assumed to be incompressible,

isothermal and inertialess, in order to make the analysis

tractable. In general the success of simple models, like this

one, can provide physical insight into otherwise complex

phenomena and boost confidence in the modeling approach,

while sacrificing quantitative rigor. It is hoped that the

reader will gain some of the former from this work, while

forgiving the latter. Readers interested in learning more

about these methods should consult continuum mechanics

texts (e.g. Segel, 1987; Lin and Segel, 1994) and the cited

literature.

Consider the two-dimensional deformation of a single

layer of thickness H*, composed of relatively competent

material in no-slip contact with two semi-infinite half-

spaces of less competent material (Fig. 3). A coordinate

system (x, z) is chosen such that the x-axis lies at the mean

position of the layer, with the z-axis perpendicular to the

layer. The layer is subjected to steady layer-parallel

shortening in pure shear. This is achieved by assuming a

basic velocity distribution which is proportional to distance

from the origin and scaled to an assumed far field

dimensional velocity V*, such that the deformation is

shortening in the x-direction and extending in the z-

direction. Deformation is assumed to be incompressible,

thereby simplifying the mass conservation equation (A1). It

is also assumed to be isothermal, allowing further

simplification by neglect of the heat equation, and so slow

that inertial terms can be neglected in the momentum

balance equation (A2). Finally, we assume that the

deforming media are SOFs, with constitutive equation (1),

which is expanded upon in Appendix A:

T * Z h*A*
1 Cb*A2*

1 Cg*A*
2 : (1)

We use the SOF to model rock rheological behavior



Fig. 3. Assumed model geometry depicting folding of a single competent layer in layer parallel compression.
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because it is the simplest nonlinear constitutive equation

exhibiting viscoelastic effects (Rundle and Passman, 1982).

The SOF includes both linear and nonlinear viscosity fluids

(including power law fluids) as special cases (Joseph, 1989),

and therefore provides a consistent basis for comparing

results of extant analytical theories (Biot, 1961; Ramberg,

1963; Chapple, 1968; Sherwin and Chapple, 1968; Fletcher,

1974, 1995; Smith, 1975, 1977, 1979; Alexander and

Watkinson, 1989; Goff et al., 1996; Patton, 1997), recent

numerical simulations (Zhang et al., 1996; Hobbs et al.,

2000; Schmalholz and Podladchikov, 2000; Muhlhaus et al.,

2002), and our own work. However, it is implausible that

power law representations of rock mechanics data are

directly applicable to deformations in deep time (Paterson,

1987; Rutter and Brodie, 1991). Linear viscoelasticity (e.g.

Maxwell rheology) is also problematic, notably in the

prediction of excessive compressive strengths for rocks and

the need to impose localization mechanisms to achieve

realistic deformation (e.g. McAdoo and Sandwell, 1985).

Localization in real rocks arises self-consistently based on

rock fabric, grain size distribution, fluid and thermal

diffusive processes, etc. under applied forcing and therefore

by definition is ‘nonlinear’, but as a function of what? For

these reasons we sought a nonlinear constitutive equation

suited to the study of slow deformation, which incorporated

viscoelasticity, finding it in the SOF. This equation has been

used to study simple shearing deformation (Hobbs, 1972),

rock mechanics data (Passman, 1982), melts and magmatic

suspensions (Spera et al., 1988), transverse oceanic ridges

(Bercovici et al., 1992), and the formation of lithospheric

plates (Patton et al., 2000).

We scale and non-dimensionalize the model system, the

purpose of which is to expose the physics and simplify

subsequent analysis. At any time this step can be undone by

introducing measured or assumed values of the dimensional

quantities appearing in the problem. Prior to this, however,
we take a closer look at the dimensions of the coefficients

appearing in the SOF (Eq. (1)). Dimensional analysis (Lin

and Segel, 1994) is a simple yet subtle tool of applied

mathematics. Use of this procedure in Eq. (1) shows that the

first and second normal stress coefficients g* and b* have

dimensions (mass/length). Given that shear viscosity h* has

dimensions (mass/length–time), g* and b* can be rep-

resented by the product of h* and ‘natural’ times for the first

and second normal stress differences arising as a function of

deformation history (Truesdell, 1964). The former time,

identified as t*, is the ‘relaxation time’ common to all

viscoelastic theories, while the latter one is associated with

nonlinear viscosity (e.g. power law) effects. Consequently,

it is assumed that g*ZKt*h*, where the negative sign on

t* is necessary to make the last two terms of Eq. (A3c)

additive in the stress equation (A3a). The first two terms of

Eq. (A3c) are neglected because they are explicitly time

dependent and thereby contradict the assumed steady

deformation. Furthermore nonlinear viscosity effects are

neglected in this simplified analysis and are well documen-

ted elsewhere (e.g. Fletcher, 1974, 1995; Smith, 1977,

1979). Consequently we define b*Z0 throughout the

balance of the paper.

In the folding of viscous layers competence contrast is

naturally expressed as a viscosity ratio, here defined as wZ
h 0*/h* (Fig. 3). However, while viscosity contrasts are

possible in viscoelastic folding, they will be shown to be of

secondary importance to localization processes. Compe-

tence contrast can also be defined on the basis of relaxation

time, t*, hence we assume that t*Ot 0*. Note that in SOFs

the shear viscosity scales the magnitude of stress (Eq.

(A4c)), a property found earlier to be relevant in the plate

formation problem of geodynamics (Patton et al., 2000).

Scaling all dimensional lengths, times, and stresses by

competent layer thickness (H*), inverse strain rate (H*/V*),

and shear stress (h*V*/H*), respectively, and introducing
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appropriately scaled variables into the model system (Eqs.

(A1), (A2) and (A3a)–(A3c)) leads to the non-dimensional

system of equations (A4a)–(A4c). Observe that dimensional

quantities like shear viscosity and relaxation time pre-

viously found throughout the model system are now found

only in the two dimensionless parameters w and Wi. w is the

viscosity contrast defined earlier while Wi is the Weissen-

berg number, defined as a ratio of time scales, WiZt*/(H*/

V*).

Substituting the stress equation (A4c) into the momen-

tum balance equation (A4b) and writing everything in

partial derivatives leads to Eqs. (A5a)–(A5c). Eqs. (A5a)–

(A5c) can be manipulated producing a differential operator

on the stream function (Patton, unpublished notes).

However, solving for the stream function in this case

requires numerical methods. Because the purpose of this

paper is to gain insight into the mechanics of the assumed

rheology and how it might relate to rock deformation, we

shall focus on a purely analytical means of solution.

Numerical simulations based on this formulation are work

in progress.

A method commonly used in folding theories to further

simplify the problem is linearization of the flow field. This is

most often achieved by expanding the flow in series based

on a small dimensionless parameter, defined by the

deviation of the layer interfaces from an initially assumed

plane condition. Here interfacial deviation d* (Fig. 3) is

scaled by layer thickness so that the small parameter 3Zd*/

H*. In the expansion equations (A6a)–(A6c) 3 is assumed to

be finite but much smaller than unity (0!3/1). This

procedure strictly limits the validity of the mathematical

formulation to infinitesimal amplitude, or low limb dip

folding. Finite amplitude effects are certainly important to

fold growth, particularly in studies of fold shape. However,

linearization in this case reduces the complexity of the

problem while retaining terms proportional to Wi, consistent

with the goal of this paper. Terms proportional to 3 in Eqs.

(A6a)–(A6c) are commonly referred to as perturbations,

because they represent small deviations from the assumed

basic flow state. In this case the basic flow is assumed to be a

pure shearing plane strain that satisfies Eqs. (A5a)–(A5c)

identically. Consequently, all terms containing the basic

flow drop out of the analysis, leaving only the perturbation

flow. Substituting Eqs. (A6a)–(A6c) into Eqs. (A5a)–(A5c),

canceling a factor 3 common to all terms, and neglecting all

remaining terms proportional to 3 produces Eqs. (A7a)–

(A7c). Observe, for example, that where before there were

11 terms proportional to Wi in Eq. (A5b), there are now only

three in Eq. (A7b).

Eqs. (A7a)–(A7c) are relatively easy to write in closed

form using a dimensionless stream function j(x, z), where

u1Zvj/vz and w1ZKvj/vx. This technique is motivated

by the incompressibility equation (A7a), which the stream

function satisfies identically (Batchelor, 1967). Substituting

for the velocity components in terms of the stream function

and combining the expressions (A7b) and (A7c) leads to the
partial differential equation (2) governing perturbation flow:

a2 v
4j

vx4
C 1Ca2

� � v4j

vx2vz2
C

v4j

vz4
Z 0 (2)

where

a2 Z
1K2Wi

1C2Wi
: (3)

Due to our earlier assumption on g* in Eq. (1) the relative

viscosity w does not appear in Eq. (2).

Low amplitude deviations of the folding layer from an

initially assumed planar state (Fig. 3) can be analyzed using

separable normal mode solutions (Eq. (A10)). Substituting

Eq. (A10) into Eq. (2) leads to the characteristic equation:

r4 K 1Ca2
� �

r2u2 Ca2u4 Z 0 (4)

with roots

r ZGu1 or r ZGau2: (5)

The general solution of Eq. (2) is therefore dependent on

Wi. This can be visualized by plotting jaj versus Wi (Fig. 4),

revealing dissimilar deformation regimes. For (I) 0!Wi!
½, (II) WiZ½, and (III) ½!Wi!N, the general solution is

given by Eqs. (A13a)–(A13c), respectively. Patton (1997)

used the regime I solution to model folding, as will be

discussed in Section 5.

Clearly Eq. (2) is singular as Wi/½ (i.e. a/0).

Singularities like this one are commonly associated with

dramatic changes in physical behavior. Because Wi has

specific physical meaning, this implies a change in the

character of deformation when the relaxation time exceeds

H*/2V*. For example, for a meter thick competent bed

deformed at a tectonic plate velocity of about 10K8 m/s this

threshold relaxation time is about 107 s (w1 year) (Eq.

(A14)). But what does jaj represent physically? It can be

shown using a change of variables that jaj uniquely and

naturally scales lengths in this region of dramatic change

(see Section 9.2 of Lin and Segel (1994) and Eq. (A17)).

In the initial statement of the folding problem we

assumed incompressibility and neglected inertial terms. We

also retained two normal stress terms, heretofore neglected

in folding analyses, which appear in Eq. (A3c). The singular

behavior of Eq. (2) is linked to these terms. Physically, this

implies that at some critical value of viscoelastic strain

energy the character of deformation can change, presumably

from distributed to localized, and possibly inertial, modes

(Fig. 4). Thus jaj must be inversely proportional to strain

energy in the deforming medium, so that strain energy is

high when jaj is small. As such jaj appears to modulate the

stability of the resulting perturbation motions. For these

reasons we call it the ‘spectral radius’, consistent with that

term’s use in analyzing the stability of finite difference

methods.

At this point it is useful to recall the reciprocal

relationship between wavenumber u and length [, that is



Fig. 4. Plot of spectral radius (Eq. (3)) versus Weissenberg number, Wi. This plot reveals at least three dissimilar regimes for the deformation of nonlinear

viscoelastic media.
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[fuK1. Immediately, we see that the roots (Eq. (5))

predict the existence of two independent length scales, in

contrast to the linear viscous and elastic models, which

predict only one. In order to distinguish between such linear

(‘biharmonic’) models and the nonlinear viscoelastic model

presented here, we call Eq. (2) the ‘diharmonic’ equation. In

the balance of this paper the ratio of these length scales is

identified with observed non-dimensional wavelengths of

folds and thrust faults.

Quite independent of their physical interpretation, further

analysis of the roots (Eq. (5)) leads to a scaling relationship.

First, we write [1wuK1
1 and [2w(au2)K1 and form the ratio

[2/[1w(au2/u1)K1. Now consider that although Wi is

defined as a ratio of time scales t*/(H*/V*), where t* is

relaxation time and H*/V* is the reciprocal of the imposed

basic strain rate, it could just as easily be written as a ratio of

length scales (t*V*)/H*. This duality of space and time is a

generally recognized property of diffusive systems (Tur-

cotte and Schubert, 2002, p. 149). Consequently, we are free

to identify Wi as the non-dimensional wavenumber appear-

ing in the scaling relationship derived above; that is

Wihu2/u1. Although this choice is by no means unique,

it is a most convenient one given the overall context of the

problem. As a result, we can redefine the scaling

relationship as:

Lw aj jWi
� �K1

: (6)

Observe in Eq. (6) that jaj appears in the denominator,

consistent with the inverse relationship between strain

energy and jaj deduced above in connection with the

singular behavior of Eq. (2). Consequently we shall refer to

L generically as the ‘scalar energy density’ (Fig. 5).
4. Viscoelastic strain energy principle

A useful starting point for interpreting Eq. (6) is to

imagine an experiment in which a cylindrical rock specimen

is subjected to progressive end loading. For relatively small

strains the work done on the cylinder is, to a first

approximation, stored as energy throughout the specimen.

As the load is increased the additional work done on the

cylinder eventually results in localization of deformation

and rupture. Traditionally such experiments have been

interpreted in terms of Mohr–Coulomb failure surfaces in

stress space, an interpretation that underpins much of the

engineering strength of materials theory. Of course this is a

reasonable description of short-term behavior, but does not

address the issue of the longer time scales assumed to exist

in natural rock deformation.

The scalar energy density (Eq. (6)) is defined in terms of

two factors having different qualities. Recall that Wi can act

as both a non-dimensional time scale and a non-dimensional

wavenumber. In the former role it has an intrinsic quality

related to the history of deformation. Through Eq. (3), the

spectral radius jaj takes on unique values (real, zero, or

imaginary) depending on Wi, and by association also has an

essentially intrinsic quality. Therefore we define the

intrinsic energy density as LIwjajK1 (Fig. 5), and interpret

it as the internal energy state of a material particle resulting

from the integrated history of motions around the particle,

beginning in the far field. Observe that LI grows large as

Wi/½ emphasizing the transitional nature of the model at

that value of Wi.

In its wavenumber role Wi has an extrinsic quality related

to non-dimensional wavelengths of the deforming



Fig. 5. Plot of scalar energy density versus wavenumber, Wi. LI, LE, and LQ denote the intrinsic, extrinsic, and quasi-static energy densities, respectively. The

distributed-localized transition (B–X/X 0) occurs when LI exceeds a value of about seven at the bottom of the energy well (Y).
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competent layer (Fig. 3). Such deformation is necessarily

‘distributed’. Thus we define the extrinsic energy density,

LEwWiK1 (Fig. 5), and interpret it as the energy threshold

for the onset of distributed deformation—in this case

folding. This is equivalent to folding being a specific

mode of stress relaxation, which is energetically possible

only at finite strain rate. Horizontal ‘tie’ lines, drawn

parallel to the wavenumber axis from the intrinsic to the

extrinsic energy densities (Fig. 5), provide a ready means of

identifying the associated range of non-dimensional fold

wavelengths. Extending the rock cylinder analogy a bit

further, it is reasonable to assume that at some point the

‘strength’ of the material particle will be exceeded, resulting

in localized failure—a discontinuity ‘born’. It is desirable,

then, within the context of present theory to define an energy

threshold that governs this transition from distributed to

localized deformation. Such a threshold is in fact provided

by Eq. (6), because jaj appears in the denominator of that

expression. Because of the assumed ‘slow flow’ approxi-

mation we call this energy threshold the quasi-static energy

density, LQw(jajWi)K1 (Fig. 5). This is equivalent to

faulting being a specific mode of stress relaxation, which is

energetically possible only at relatively high levels of

intrinsic energy. Other likely modes of relaxation or energy

dissipation include cataclasis and heat production. Once the

transient motions associated with faulting cease, forcing

starting in the far field can begin anew, perhaps leading to

reactivation of the discontinuity. In engineering strength of

materials theory the distributed–localized transition (B–

X/X 0) would be called cohesive failure, while reactivated

slip (B 0/X 0) would be called frictional failure. Horizontal

tie lines, now drawn from the intrinsic to the quasi-static
energy densities, provide a means of identifying the non-

dimensional wavelengths associated with new and reacti-

vated faults.

Obvious implications of the preceding discussion are that

distributed deformation is quite likely for normalized

wavelengths greater than about 2.7, and that all localized

failures are preceded by some degree of distributed

deformation. Here is theoretical support for the fold-first

hypothesis. The maximum wavelength of distributed

deformation in the layer is about 6.7, i.e. its tie line is

tangent to LQ at Y. Observe that LQ exhibits an energy ‘well’

centered at about WiZ0.3, in which LQ takes values of

about 6.7–6.9. The implication here is that distributed

deformation will spontaneously ‘yield’ to localized failure if

LI exceeds values of about 7. Formation of a new

discontinuity in this manner can be thought of as a

constitutive instability, depending more on the local history

of deformation than the degree of far field forcing. Once

such a discontinuity exists it can be reactivated at energy

levels well below the critical value (i.e. 3.7 or less). Finally,

recall that LI rapidly grows as Wi/½. In the context of the

rock cylinder experiment, we note that this implies that

ultimate material strength is best measured in specimens

two times longer than they are wide. This prediction is

consistent with current ASTM standard and practical

experience.
5. Viscosity contrasts, numerical simulations, and

Deborah number

It is interesting to compare the results of the preceding
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section with those from earlier folding work in which a

viscosity contrast was explicitly included (Fig. 6). We note

that the frequency distribution of non-dimensional wave-

lengths for natural folds ranges from about 3 to 35, with

modes in the range 4–7 (Sherwin and Chapple, 1968). These

observations are difficult to reconcile with dominant

wavelength theory which suggests that the mode of the

distribution should approximate the Biot–Ramberg wave-

length for competence contrasts greater than about 100, i.e.

non-dimensional wavelengths greater than about 15 (Biot,

1961; Ramberg, 1963). This problem also pertains to

dominant wavelength numerical computations using

Maxwell elastic–viscous and elastic–plastic composite

rheologies (Zhang et al., 1996). Sherwin and Chapple

(1968) explained this discrepancy for the viscous case by

allowing for significant layer parallel shortening at compe-

tence contrasts ranging from about 14 to 30. Observe that

Zhang et al.’s (1996) composite rheologies are indistin-

guishable from the viscous case in dominant wavelength

theories for competence contrasts less than about 50. Using

the general solution (A13a), Patton (1997) found that

residual normal stresses destabilize folds at wavelengths

less than the so-called ‘transition wavelength’, while

stabilizing those at longer wavelengths. Clearly it is possible

to reconcile fold observations with this latter viscoelastic

theory at competence contrasts of about 10–36, consistent

with those found by Sherwin and Chapple (Watkinson and

Patton, 2001).

Recent numerical studies of finite amplitude folding in

Maxwell viscoelastic media have shown the simultaneous

development of two fold wavelengths (Schmalholz and
Fig. 6. Plot of non-dimensional wavelength versus competence contrast showing

Watkinson and Patton, 2001).
Podladchikov, 2000; Muhlhaus et al., 2002). Schmalholz

and Podladchikov (2000) assert that while the Deborah

number, De, has little effect on this type of folding their new

‘R’ parameter has a significant one. Note that De and Wi are

often used interchangeably in the literature (Larson, 1992).

However, using definitions provided in their paper it can be

shown that so-called ‘viscoelastic mode’ folding has growth

rates equal to 4De1/2/3w and dominant wavelengths equal to

pDeK1/2. Note that ‘R’ appears in neither of these

expressions. Furthermore, while the growth rate’s depen-

dence on De is indeed weak, consistent with their assertion,

its dependence on viscosity contrast is rather strong, 1/w

instead of (1/w)2/3. Consequently, it appears that their results

are dominated by the effects of viscosity contrast, rather

than viscoelasticity. Also note that their dominant wave-

length, although independent of viscosity contrast, is

proportional to DeK1/2 rather than DeK1 as suggested by

the viscoelastic strain energy principle (Eq. (6)).

Muhlhaus et al. (2002) report that the characteristic

length scale of emerging fold patterns in their model tends

to zero with increasing relaxation time, although the specific

proportionality is not stated. They also mention numerical

difficulties such as mesh sensitivity arising at high

elasticities, and show how couple stresses can be used to

stabilize short wavelength folds. Finally, they suggest that

large couple stresses, if included in such models, could lead

to failure of the bending rock layer producing a disconti-

nuity. These qualitative findings are broadly consistent with

those discussed above in connection with Eq. (6). Conse-

quently, we predict that failure should occur in simulations

incorporating couple stresses at Dew½.
relationship between observational data and various folding theories (after
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6. Observations across a range of scales

In this section we summarize and discuss observations

from published studies spanning a range of scales, from

microscopic splay cracks in ice to lithospheric scale folds.

The discussion is thematic and really addresses the data

more than the models used to interpret it. The studies

summarized here are but a few of those we have found

which appear to express the viscoelastic energy principle.

The fold first hypothesis holds that early-formed folds

serve to localize thrust ramps in layered sedimentary rock

sequences. In testing this idea Goff et al. (1996) present

measurements of thrust sheet length to thickness ratios for

two thrust sheets of the Sevier fold–thrust belt, Wyoming.

These observations are at a larger scale than our own at Sun

River, and are constrained by seismic and drill hole data.

The non-dimensional thrust sheet lengths they report are

7.05G0.26 and 7.15G0.87 for the Absaroka and Darby

thrust sheets, respectively. These values are identical, within

reported uncertainties, to the critical non-dimensional

wavelength of about 6.9 predicted by Eq. (6) for localization

of deformation.

A body of work dating from the 1980s makes clear large-

scale deformation of the oceanic lithosphere in the central

Indian Basin. McAdoo and Sandwell (1985) present

geophysical observations, including Seasat altimeter data,

which suggest lithospheric scale folding with dimensional

wavelengths ranging from about 130 to 250 km. The highest

number of geoid undulations occurs at about 190 km. They

also present a model, based on the Goetz–Evans yield

strength envelope, to explain this range of wavelengths

while avoiding the unrealistically high stresses associated

with Euler buckling. McAdoo and Sandwell (1985) estimate

the average thickness of the lithosphere involved in the

folding to be about 46 km, based on the half-space cooling

model (Parsons and Sclater, 1977). Thus, the equivalent

range of normalized wavelengths is about 2.8–5.4, with a

maximum at about 4. These values are broadly consistent

with the distributed modes predicted by the present theory.

It is interesting to note that the Seasat observations have a

bimodal distribution (McAdoo and Sandwell, 1985, their

fig. 7), with maxima at about 190 and 290 km. Furthermore,

the overall range of dimensional wavelengths appears to be

75–325 km (i.e. non-dimensional wavelengths from 1.6 to

7.1). We speculate that this might indicate the presence of

both folds and thrust faults of the lithosphere.

Interest in the central Indian Basin deformation prompted

laboratory model analog work as well. Bull et al. (1992)

conducted a series of layered analog experiments, properly

scaled to geologic conditions, to test the preferred mode of

deformation. Based on results from power law fluid theory,

there was some controversy about whether the lithosphere

would shorten by folding or pinch and swell. Their

experiments showed that the model lithosphere folded at

an average value of about 6.9. They also mention that faults

formed in their models, following the appearance of folds.
These observations are in excellent agreement with the

present theory, which therefore explains their heretofore

‘poorly understood’ association.

Up to this point all of the observations discussed have

been at intermediate to large scale. We shall finish this

discussion by looking briefly at the opposite extreme.

Schulson et al. (1999) describe compression experiments on

2D microstructural (S2 columnar) ice, in which they

observed ‘splay cracks’ forming adjacent to tensile wing

cracks near sliding grain boundaries. The splay cracks

formed only on one side of the sliding boundary, and

ultimately were the locus of shear faulting in the specimens.

Prior to localized failure splay cracks were observed to form

throughout the specimens, wherever sliding parent cracks

occurred. Based on these observations the authors argued

that splay cracks play a crucial role in localizing failure,

specifically by producing a series of microcolumns which

first bend and then finally break. Load shed from column to

column ultimately leads to a dynamic shear failure.

Significantly, Schulson et al. (1999) report ‘slenderness’

(length/width) ratios for these microcolumns of 3.1–7.2.

These values apparently pertain to intact (i.e. pre-localiz-

ation) microcolumns from step strain experiments, where

the macroscopic specimen is still intact and the peak

(failure) stress is not yet reached. These observations are in

excellent agreement with the range of non-dimensional

wavelengths predicted by our viscoelastic strain energy

principle, for both distributed and localized deformations.

This finding thus lends theoretical support to Schulson et

al.’s (1999) assertion that splay microcolumn failure

provides a critical localization mechanism in brittle solids.
7. Conclusion

The strength of the approach described in this paper is the

explicit demonstration of a transition from distributed to

localized modes of deformation, specifically as expressed in

the folding and thrust faulting of a competent rock layer.

This is amply supported by the agreement between

observations at Sun River, and elsewhere, and the predic-

tions of the strain energy principle (i.e. distributed and

localized modes scaling as LEwWiK1 and LQw(jajWi)K1,

respectively). The analysis presented here, although sim-

plified, raises numerous questions that serve as an outline

for future research in structural geology, geodynamics, rock

mechanics, and seismology. Furthermore, the insights

arising from this analysis provide motivation to reconsider

both empirical and observational data at many spatial and

temporal scales.
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Appendix A. Derivation of the ‘diharmonic’ equation

governing deformation of nonlinear viscoelastic

materials

The field equations for incompressibility (Eq. (A1)) and

momentum balance (Eq. (A2)) in an isothermal, inertialess

continuum, in the absence of body forces, are assumed to be

valid:

0 ¼ V*$v* (A1)

0 ¼KV*p* þ V*$T * (A2)

with velocity v*, pressure p*, and differential stress T*

defined by the second order fluid equation (A3a) (Coleman

and Noll, 1960):

T * Z h*A*
1 Cb*A2*

1 Cg*A*
2 (A3a)

where

A*
1 ZV*v* C ðV*v*ÞT (A3b)

and

A*
2 Z

vA*
1

vt*
C v*$V*

� �
A*

1 K ðV*v*ÞTA*
1 KA*

1V
*v* : (A3c)

The superscript * is used to identify dimensional

quantities. A*
1 (Eq. (A3b)) and A*

2 (Eq. (A3c)) are the first

and second kinematic tensors, respectively (Rivlin and

Ericksen, 1955), and note that A*
2 has been expanded as an

upper convected derivative (Oldroyd, 1950; Larson, 1992).

()T denotes the transpose of a tensor and t* denotes time. The

coefficients h*, g*, and b* denote shear viscosity, and the

first and second normal stress coefficients, respectively.

Observe that A*
1 Z2D*, where D* is the usual rate of

deformation tensor.

Consequently, if g*Zb*Z0, then the formulation

reduces to that for a Newtonian fluid. Also, if only g*Z0,

then the formulation is that for a nonlinear viscous (i.e.

Reiner–Rivlin) fluid. Power law fluids are a special case of

the latter fluid. In what follows we assume that b* is

identically zero and that g*ZKh*t*, where t* is relaxation

time.

Scaling length, time, and stress by competent layer

thickness (H*), inverse strain rate (H*/V*), and shear stress

(h*V*/H*), respectively, and introducing appropriately

scaled variables into Eqs. (A1), (A2) and (A3a)–(A3c)

leads to the following system of equations:

0 ZV$v (A4a)

0 ZKVpCV$T (A4b)
T Z 2wDC2wWi ðVvÞTDCDðVvÞ
� �

(A4c)

where wZh* =h*
0 and WiZt*V*/H*.

The non-dimensional parameters w and Wi are the

relative viscosity and Weissenberg number, respectively.

Substituting the constitutive equation (A4c) into the

momentum balance equation (A4b) and expressing every-

thing in partial derivatives leads to the following equations:

0 Z
vu

vx
C

vw

vz
(A5a)

0 ZK
vp

vx
CwV2uCwWi 8

vu

vx

v2u

vx2

�

C4
vu

vz
C

vw

vx

� �
v2u

vxvz
C2

vu

vz
V2w

C
vu

vz
C

vw

vx

� �
v2u

vxvz
C

v2w

vz2

� �

C2
vw

vz

v2u

vz2
C

vu

vx

v2w

vxvz

� ��
(A5b)

0 ZK
vp

vz
CwV2wCwWi 8

vw

vz

v2w

vz2

�

C4
vu

vz
C

vw

vx

� �
v2w

vxvz
C2

vw

vx
V2u

C
vu

vz
C

vw

vx

� �
v2u

vx2
C

v2w

vxvz

� �

C2
vu

vx

v2w

vx2
C

vw

vz

v2u

vxvz

� ��
(A5c)

Further simplification of the problem, still retaining

terms proportional to Wi, can be achieved by linearizing the

solution around a pure shearing basic flow. Assuming a

basic flow (u0, w0)Z(Kx, z) and introducing the small

parameter 3Zd*/H*, where d* is the amplitude of growing

fold-like disturbances at the layer interfaces (Fig. 3), Eqs.

(A5a)–(A5c) can be transformed using solutions of the

following form:

uðx; z; tÞZ u0ðxÞC3u1ðx; z; tÞCO 32
� �

(A6a)

wðx; z; tÞZw0ðxÞC3w1ðx; z; tÞCO 3
2

� �
(A6b)

pðx; z; tÞZ p0ðxÞC3p1ðx; z; tÞCO 32
� �

(A6c)

Upon substituting Eqs. (A6a)–(A6c) into Eqs. (A5a)–

(A5c), canceling the common factor 3, and neglecting terms

O(3) and higher, we obtain Eqs. (A7a)–(A7c). Observe that

the basic flow (u0, w0) vanishes entirely because it satisfies

Eqs. (A5a)–(A5c) identically, leaving only the linearized

flow (u1, w1):
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0 Z
vu1

vx
C

vw1

vz
(A7a)

0 ZK
vp1

vx
CwV2u1

CwWi K8
v2u1

vx2
C2

v2u1

vz2
K2

v2w1

vxvz

� �
(A7b)

0 ZK
vp1

vz
CwV2w1

CwWi 8
v2w1

vz2
K2

v2w1

vx2
C2

v2u1

vxvz

� �
(A7c)

These equations can be solved in closed form using a

dimensionless stream function j(x, z), where u1Zvj/vz and

w1ZKvj/vx, which satisfies the incompressibility equation

(A7a) identically. Substituting for the velocity components

in terms of the stream function and combining the resulting

expressions leads to the ‘diharmonic’ equation:

a2 v
4j

vx4
C 1Ca2

� � v4j

vx2vz2
C

v4j

vz4
Z 0 (A8)

where

a2 Z
1K2Wi

1C2Wi
: (A9)

Because folds in this model are of infinitesimal

amplitude, 0!3/1, they can be analyzed using separable

normal mode solutions of the form:

jZ eiuxCrz (A10)

Substituting Eq. (A10) into Eq. (A8) leads to the

characteristic equation:

r4 K 1Ca2
� �

r2u2 Ca2u4 Z 0 (A11)

with roots

r ZGu1 or r ZGau2: (A12)

The general solution of Eq. (A8) is therefore dependent

on Wi. For (I) 0!Wi!½, (II) WiZ½, and (III) ½!Wi!N,

the general solution is given by Eqs. (A13a)–(A13c),

respectively. Patton (1997) used the regime I solution to

model the onset of single layer folding:

jI Z Aeuz CBeKuz CCeauz CDeKauz
� �

eiux (A13a)

jII Z Aeuz CBeKuz CCzCD
� �

eiux (A13b)

jIII Z Aeuz CBeKuz CCcosðauzÞCDsinðauzÞ
� �

eiux

(A13c)

Clearly Eq. (A8) is singular as Wi/½ (Fig. 4). This

implies that nonlinear viscoelastic materials should exhibit

transitional behavior in deformations where Wi/½. For

example in the folding of meter thick (H*Z1 m) competent
beds at tectonic far field velocities (V*Z10K8 m/s),

relaxation times t* (Eq. (A14)) need only be greater than

about 107 s (w1 year) in order for this to occur:

t*R
H*

2V *
Z 5!107 s (A14)

In this transitional region the scaling for lengths leading

to Eqs. (A4a)–(A4c) cannot be expected to be valid.

Fortunately, it is straightforward to deduce a new scaling

factor for lengths in this case. Defining a small parameter

sZa2, assuming 0!s/1, and introducing the change of

variables xZx/l into Eq. (A8), where l is the scaling factor

we seek, we obtain:

s

l4

v4j

vx4
C

1Csð Þ

l2

v4j

vx2vz2
C

v4j

vz4
Z 0: (A15)

The scaling factor can be determined by balancing the

coefficients of the first two terms in Eq. (A15). Thus:

s

l4
Z

1Csð Þ

l2
0l2 Z

s

1Cs
0lws1=2 (A16)

or

xw
x

a
: (A17)

Thus, the transitional behavior of this model is inversely

proportional to a, i.e. the model behavior changes rapidly

over distances much shorter than layer thickness. This

suggests localization of deformation, perhaps at the

microphysical level.
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